F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)

Course Title	Amazing World of Microbiology	
Course Code: 23SBMB11MM		No. of Credits: 2 (1 Unit equivalent to 1 Credit)
Course Type: MM (Major Mandatory)		Total Teaching Hours: 30

	Course Objectives
1.	To enrich students' knowledge and train them in pure Microbial Sciences
2.	To present to the students the historical developments in microbiology
3.	To inculcate sense of Scientific Responsibilities & Social Awareness
4.	To familiarize students with Microbial Diversity
5.	To introduce the basic concepts of classification and taxonomy of micro-organisms

	Course Outcome
1.	Students will be acquainted with the different areas of Microbiology
2.	Students will become aware about the role of Microbiologist in various fields of science.
3.	Students will understand the Significance of Micro-organisms in Day-to-Day Life

Syllabus		
Unit I	Scope, Applications and Role of Microbiologist in various fields	21
	Spontaneous Generation theory and Discovery of Microorganisms	1
	Experiments by Redi, Pasteur and Tyndall Robert Hooke and Cell	3
	Theory 1.Medical Microbiology	3
	i. Louis Pasteur : Germ Theory of disease	
	ii. Robert Koch and Koch's Postulates, Rivers' postulates	
	iii. Joseph Lister, antisepsis and chemical disinfection	2
	2. Chemotherapy –	
	i. Paul Ehrlich : magic bullets	
	ii. Discovery of Antibiotics: Alexander Fleming, Waksman	
	3. Vaccination	2
	i. Edward Jenner :Concept of vaccine	
	ii. Definition and types of vaccine	

	4. Virology	3
	i. Dimitri Iwanowski: Discovery of viruses	
	ii. Discovery of Bacteriophages	
	iii. Applications of Bacteriophages	
	5. Agricultural Microbiology	3
	i. Martinus Beijerinck and Sergei N. Winogradsky	
	ii. Bio-control agents – concept and applications	
	iii. Bio-inoculants- Types and applications	
	6.Industrial Microbiology	3
	i. Louis Pasteur – Fermentation	
	ii. Microbes in Industry	
	iii. Probiotics and fermented foods	
Unit II	iii. Probiotics and fermented foods Microbial Diversity	15
Unit II	iii. Probiotics and fermented foods Microbial Diversity	15
Unit II	iii. Probiotics and fermented foods Microbial Diversity 1. Algae	15 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity 1. Algae 2. Protozoa 	15 2 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity 1. Algae 2. Protozoa 3. Fungi (Molds and Yeasts) 	15 2 2 2 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity 1. Algae 2. Protozoa 3. Fungi (Molds and Yeasts) 4. Bacteria 	15 2 2 2 2 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity 1. Algae 2. Protozoa 3. Fungi (Molds and Yeasts) 4. Bacteria 5. Viruses, viroid's and Prions 	15 2 2 2 2 2 2 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity Algae Protozoa Fungi (Molds and Yeasts) Bacteria Viruses, viroid's and Prions Archaebacteria 	15 2 2 2 2 2 2 2 2 2
Unit II	 iii. Probiotics and fermented foods Microbial Diversity Algae Protozoa Fungi (Molds and Yeasts) Bacteria Viruses, viroid's and Prions Archaebacteria Principles of Classification of bacteria(Bergey's) and viruses 	15 2 2 2 2 2 2 2 2 3
Unit II	 iii. Probiotics and fermented foods Microbial Diversity Algae Protozoa Fungi (Molds and Yeasts) Bacteria Viruses, viroid's and Prions Archaebacteria Principles of Classification of bacteria(Bergey's) and viruses (ICTV) 	15 2 2 2 2 2 2 2 3

1. Sukshmjeevanu in Vedas: The Forgotten Past of Microbiology in Indian Vedic Knowledge

- 2. Micro-organisms in Vedas R. K. Jakhmola
- 3. The Medicine of Old India Rachel Hajar, M.D. Heart Views. 2013 Apr-Jun; 14(2): 92.
- 4. Cakra-samgraha of Cakrapani, Edited with the commentary of Sivadasa Sena by Devendra Nath Sen and Upendra Nath Sen, Calcutta.
- 5. On the incidence of raktaja krimi (dermatophytes) in chhindwara, madhya pradesh
- M K Rai 1, K K Shrivastava

6. Microbiological Properties of Beejamrit, an Ancient Indian Traditional Knowledge, Uncover a

Dynamic Plant-Beneficial Microbial Network Shibasis Mukherjee Ramakrishna Mission

Vivekananda University and others

7. Vedic Indians were Aware of the Microbial Biodiversity, Demanding 'Kannva' as the Father of Microbiology Sachidananda Padhy

8. Mahdihassan, S.: 1981, 'Parisrut the earliest distilled Liquor of Vedic Times or of about 1500 BC', UHS, 16(2), 223-229.

9. Daniel Lim Microbiology, 2nd EditionMcGraw-Hill Publication

10. Ingraham J. L. and Ingraham C.A. Introduction to Microbiology, 3rd Edition, Thomson Brooks / Cole

11. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

12. Prescott L.M., Harley J.P., and Klein D.A. Microbiology, 6th Edition MacGraw Hill Companies Inc.

13. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology,

5th Edition.Macmillan Press Ltd

14. D H Bergey; John G HoltBergey's manual of determinative Bacteriology, 9th Edition.

Baltimore: Williams & Wilkins, 1994.

F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)			
Course Title Techniques in Microbiology			
Course Code: 23SBMB12MM			No. of Credits: 2
Course Type: MM (Major Mandatory)			Total Teaching Hours: 30

	Course Objectives
1.	To enrich students' knowledge and train them in microbial techniques
2.	To make them learn different types of microscopy
3.	To introduce the concept of sterilization and disinfectant

	Course Outcome
1.	Students will be acquainted with the different types of microscopes
2.	Students will learn techniques to observe micro-organisms and their organelles
3.	Students will understand the importance of sterility in Microbiology

Syllabus		
Credit I	Microscopy	15
	1.Discovery Of Microscope :	1
	Micrographia of Anton von Leeuwenhoek and Robert Hooke	
	2.Microscopy:	4
	A.Bright field microscopy:	
	i.Structure, working of and ray diagram of a compound light	
	microscope; concepts of magnification, numerical aperture and	
	resolving power.	
	ii. Types, ray diagram and functions of - condensers, eyepieces and	
	objectives	1
	iii. Concept of aberrations in lenses - spherical, chromatic, comma and	2
	astigmatism	2
	B.Principle, working and ray diagram of	
	i. Dark field Microscope	
	ii. Fluorescence Microscope	

	iii.Electron Microscopy – TEM,SEM	
	3.Staining Techniques:	5
	i. Definition of Stain; Types of stains (Basic and Acidic),	
	ii. Properties and role of Fixative, Mordant, Decolouriser and	
	Accentuator	
	iii. Monochrome staining and Negative (Relief)staining	
	iv. Differential staining - Gram staining and Acid-fast staining	
	v. Special Staining- Flagella Staining, Spore Staining	
Credit II	Sterilization and Disinfection	15
	1. Sterilization	7
	i. Physical Agents - Heat, Radiation, Filtration	
	ii. Checking of efficiency of sterilization (Dry and Moist) – Biological	
	and Chemical Indicators	
	2. Disinfection:	
	i.Chemicalagentsandtheirmodeofaction-	8
	Aldehydes, Halogens, Quaternary ammonium compounds, Phenol and	
	phenolic compounds,	
	ii.Heavy metals, Alcohol, Dyes, Detergents and Ethyleneoxide.	
	iii.Characteristics of an ideal disinfectant	
	iv.Checking of efficiency of disinfectant - Phenol Coefficient (Rideal-	
	Walker method)	

1. Salle A.J. (1971) Fundamental Principles of Bacteriology 7th Edition. Tata MacGraw Hill Publishing Co.

2. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc.

3. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition Cambridge University Press.

4. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press

5. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)

Course Title	e General Microbiology-I		
Course Code: 23SBMB13MM			No. of Credits: 2
Course Type: MM (Major Mandatory)			Total Teaching Hours: 60

	Course Objectives
1.	To make students aware about the conduct in Microbiology laboratory
2.	To make them familiar with glassware, equipment and instruments (including microscope)
	in Microbiology laboratory
3.	To teach them basic techniques required to isolate, cultivate and observe the micro-
	organisms
	or Burnonio

	Course Outcome			
1.	Students will learn the handling and maintenance of various instruments and equipment			
2.	Students will learn to isolate and cultivate the micro-organisms			
3.	Students will be acquainted with the methods used for observation of the micro-organisms using various staining techniques and their motility patterns			

Expt.	Topics	No. of
No.		Practicals
1	Safety measures(BSL1, BSL2, BSL3 and BSL4) and Good Laboratory Practices in microbiology laboratory, Concept of virulence, pathogenicity and transmission of microorganisms	2
2	To study the principle, operation, precautions and application of common microbiology laboratory instruments: i. Incubator ii. Hot air oven iii. Autoclave iv. Colorimeter	3

	TOTAL	15
11	Method of Isolation of bacteria : Streak plate technique	1
	ii. Culture techniques: Swarming growth and Cragie's tube method	
	i. Microscopic technique: Hanging drop method	
10	Observation of motility in bacteria using:	3
	i. Gram Staining	
9	Differential Staining	1
	ii. Negative staining	
	i. Monochrome staining	
8	Basic staining techniques:	2
	(B. stearothermophilus)	
5	Checking sterilization efficiency of autoclave using a biological indicator	1
	c. MacConkey's agar	
	b. Nutrient agar	
	a. Nutrient broth	
	Preparation of simple laboratory nutrient media:	
4	Media preparation:	1
3	Construction (mechanical and optical), working and care of bright field microscope	1
	Concept of cleaning, calibration and validation of instruments	
	vi. Clinical centrifuge	
	v. Laminar air flow hood	

1. Microbiology: A Laboratory Manual - Book by James G. Cappuccino and Natalie Sherman.

2. Practical microbiology: Professor Dr. R. C. Dubey and Dr. D. K. Maheshwari, S. Chand Publishing, 2002

3. Practical Handbook of Microbiology: 2nd Edition, Edited by Emanuel Goldman and Lorrence H. Green, CRC Press

F.YB.Sc. Sem II (NEP – Autonomy 2023 Pattern)

Course Title	Bacteriology	
Course Code: 23SBMB21MM		No. of Credits: 2
Course Type: MM (Major Mandatory)		Total Teaching Hours: 30

	Course Outcome		
1.	To enlighten the students with the basic concepts of Bacteriology.		
2.	To familiarize students with the ultra-structure of bacterial cell.		
3.	To introduce the concepts of bio-molecules.		
4.	To comprehend the organization of a bacterial cell.		
5.	To relate structure and functions of bio-molecules in a bacterial cell.		

Course Outcome			
1.	Students will be conversant with the structure of bacterial cell.		
2.	Students will acquire basic knowledge of bio-chemistry.		
3.	The students will Develop understanding about structure-function relationship in bio- molecules.		

Syllabus				
Unit I	Bacteri	al Cytology	15	
	1.Mic	robial cell size, shape and arrangements	1	
	2.Stud	lies on structure, chemical composition and functions		
	of the	following components in bacterial cell:		
	i.	Cellwall- Protoplast, Spheroplast, structure of Peptidoglycan	2	
	ii.	Cellmembrane- Structure of phospholipids		
	iii.	Endospore	1	
	iv.	Capsule	2	
	v.	Flagella, Fimbriae and Pili	1	

	vi.	Ribosomes	2
	vii.	Nucleic acids : DNA and RNA, types of RNA	1
	viii.	Plasmids	2
	ix.	Cell inclusions (Gas vesicles, carboxysomes, PHB granules,	1
		metachromatic granules, glycogen bodies starch granules,	2
		magnetosomes, sulfur granules and chlorosomes)	
TT •4 TT	D'		17
Unit II	Biomo	blecules: Structure, organization and functions	15
	1. Typ	oes of bonds in biomolecules -Covalent,	2
	co-ord	inate bond, non-covalent and linkages	
	(ester,	phospho-diester, peptide, glycosidic)	
	2. Car	bohydrates: Definition, classification	
	i.	Structure of Ribose, Deoxyribose,	4
	ii.	Disaccharides: Glycosidic bond, structure of lactose	
	iii.	Polysaccharides: Peptidoglycan	
	3. Lij	pids: Definition, classification	
	i.	Simple lipids – Triglycerides, Fats and oils, waxes.	
	ii.	Compound lipids – Phospholipid, Glycolipids	
	Derive	ed lipids – Steroids, Cholesterol	4
	4.Pro	oteins: Definition, classification	
	i.	General structure of amino acids, peptidebond.	
	ii.	Types of amino acids based on Rgroup	
	iii.	Structural levels of proteins: primary, secondary, tertiary and	5
		quaternary	
	iv.	Study of Hemoglobin, flagellin and cytoskeletalproteins	

1. Daniel Lim Microbiology, 2nd Edition McGraw-Hill Publication

2. Ingraham J. L. and Ingraham C.A. Introduction to Microbiology, 3rd Edition, Thomson Brooks / Cole

3. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

4. Prescott L.M., Harley J.P., and Klein D.A. Microbiology, 6th Edition MacGraw Hill Companies Inc.

5. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology,

5th Edition. Macmillan Press Ltd

6. D H Bergey; John G Holt Bergey's manual of determinative Bacteriology, 9th Edition. Baltimore: Williams & Wilkins, 1994

F.YB.Sc. Sem II (NEP – Autonomy 2023 Pattern)

Course Title	Course Title Cultivation and Growth of Microorganisms		
Course Code: 23SBMB22MM			No. of Credits: 2
Course Type: MM (Major Mandatory)			Total Teaching Hours: 30

	Course Objectives
1.	To enrich students' knowledge and train them in understanding requirements of
	microorganisms
2.	To make them learn different techniques to cultivate microorganisms
3.	To introduce the concept of bacterial growth and measurement of growth

	Course Outcome			
1.	Students will be acquainted with the microbial nutritional requirements			
2.	Students will learn different techniques to cultivate micro-organisms			
3.	Students will understand different phases of bacterial growth and it's measurement			

Syllabus				
Unit I	Nourishing Microorganisms:	15		
	1.Nourishing Microorganisms	1		
	i.Nutritional requirements			
	ii.Nutritional classification	1		
	iii.Design and preparation of media: Common ingredients of media	2		
	iv.Types of media	2		
	v.Factors affecting bacterial growth {pH, Temperature, Solute			
	Concentration (Salt and Sugar) and Heavy metals	3		
	vi.Concept of Enrichment, Pure Culture, Isolation of culture by streak			
	plate, pour plate, spread plate	3		
	vii.Maintenance of bacterial and fungal cultures using different			
	techniques	2		
	viii.Culture collection centres and their role			

		1
Unit II	Bacterial growth	15
	1.Bacterial growth	
	i. Kinetics of bacterial growth (Exponential growth model)	2
	ii. Growth curve and Generation time	2
	iii.Diauxic growth	2
	iv.Measurement of bacterial growth- Methods of enumeration:	
	a.Microscopic methods (Direct microscopic count, counting cells	2
	using improved Neubauer, Petroff-Hausser'schamber)	1
	b.Plate counts (Total viable count)	
	c.Turbidometric methods	
	d.Estimation of biomass (Dry mass, Packed cellvolume)	5
	e.Chemical methods (Cell carbon and nitrogen estimation)	
	v.Methods for cultivating photosynthetic, extremophilic and chemo-	
	lithotrophic bacteria, anaerobic bacteria, algae, fungi, actinomycetes	
	and viruses	
		5

1. Salle A.J. (1971) Fundamental Principles of Bacteriology 7th Edition. Tata MacGraw Hill Publishing Co.

2. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction.

38th Edition. Pearson Education Inc.

3. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and Molecular Biology. 6th Edition Cambridge University Press.

4. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press

5. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

F.Y.B.Sc. Sem II (NEP – Autonomy 2023 Pattern)

Course Title General Microbiology-II			
Course Code: 23SBMB23MM			No. of Credits: 2
Course Type: N	AM (Major Mandatory)		Total Teaching Hours: 60

	Course Objectives		
1.	To make students learn the techniques for isolation and observation of fungi and various		
	types of bacteria		
2.	To make them aware about the techniques used to enumerate the bacteria present in different		
	samples		
3.	To teach them the effect of various parameters on the growth of bacteria		

	Course Outcome		
1.	Students will learn the cultivation of various types of organisms including skin microflora		
2.	Students will understand the methods of bacterial enumeration from food, water or soil samples		
3.	Students will be acquainted with the effects of various parameters including pH, salt concentration, temperature and heavy metal on bacterial growth		

Expt.	Topics	No. of
No.		Practicals
1	Cultivation of photosynthetic, aerobic, anaerobic & chemolithotrophic organisms	2
	using Winogradsky's column, monitoring and observation of microorganisms after	
	growth	
2	Isolation of fungi from natural samples and observation by lactophenol cotton blue	2
	staining (Rhizopus/Penicillium/Aspergillus)	
3	Staining techniques:	3
	i. Endospore staining	
	ii. Capsule staining	
	iii.Metachromatic Granules	

4	Enumeration of yeast cells by microscopic technique:	1
	Neubauer chamber (Hemocytometer) method	
5	Measuring the yeast cell size by micrometry	1
6	Enumeration of bacteria from fermented food / soil / water by culture techniques:	2
	i. Spread plate method	
	ii. Pour plate method	
7	Study of normal flora of skin: i. Cultivating and observing different morphoforms of	
	bacteria from skin ii.Study of effect of washing on skin with soap and disinfectant on	
	its microflora	
8	To study the effect of different parameters on growth of bacteria: i. pH	3
	ii. Temperature	
	iii. Sodium chloride concentration	
9	Study of oligodynamic action of heavy metal	1
	TOTAL	15

1. Microbiology: A Laboratory Manual - Book by James G. Cappuccino and Natalie Sherman.

2. Practical microbiology: Professor Dr. R. C. Dubey and Dr. D. K. Maheshwari, S. Chand

Publishing, 2002

3. Practical Handbook of Microbiology: 2nd Edition, Edited by Emanuel Goldman and Lorrence H. Green, CRC Press.

F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)

Course Title	Introduction to Microbiology		
Course Code: 23SBMB21MN			No. of Credits: 2
Course Type: Minor			Total Teaching Hours: 30

Course Objectives		
1.	To enrich students' knowledge and train them in pure Microbial Sciences	
2.	To present to the students the historical developments in microbiology from Vedas till date	
3.	To inculcate sense of Scientific Responsibilities & Social Awareness	
4.	To familiarize students with Microbial Diversity	
5.	To introduce the structure of bacterial cell organelles.	

	Course Outcome			
1.	Students will be acquainted with the different areas of Microbiology.			
2.	Students will become aware about the role of Microbiologist in various fields of			
	Science.			
3.	Students will understand the Significance of Micro-organisms in Day to Day Life			

Syllabus		
Credit I	Scope and History of Microbiology	15
	I) Basic and applied aspects:	6
	a. Industrial Microbiology	
	b. Immunology	
	c. Soil and Agricultural Microbiology	
	d. Food and Dairy Microbiology	
	e. Geomicrobiology	
	f. Virology	
	II) History of Microbiology	
	A) Controversy over Abiogenesis	
	• Aristotle's notion about spontaneous generation	3
	• Redi's experiment	

	Louis Pasteur's & Tyndall's experiment	
	B) Development of Microbiology in 19 th and 20 th century	
	Germ theory of fermentation- Discovery of anaerobic life &	6
	physiological significance of fermentation	
	• Germ theory of disease- Discovery of microbial role in causation of	
	disease- Koch's postulates & River's postulates and Surgical antisepsis,	
	chemotherapy and vaccination.	
Credit II	Microbial Diversity and bacterial cytology	15
	I)Morphological and other characteristic features of	1
	• Algae	1
	Protozoa	1
	• Fungi (Molds and Yeasts)	2
	• Bacteria	1
	• Viruses, viroid's and Prions	
	II) Studies on chemical composition and structure –function relationship	9
	in bacteria;	
	• Cell wall	
	Cell membrane	
	• Endospore	
	• Capsule	
	• Flagella	
	• Fimbriae and pili	
	Ribosomes	
	Chromosomal & extra-chromosomal material	
	Cell inclusions	

1. Daniel Lim Microbiology, 2nd EditionMcGraw-Hill Publication

2. Ingraham J. L. and Ingraham C.A. Introduction to Microbiology, 3rd Edition, Thomson Brooks / Cole

3. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

4. Prescott L.M., Harley J.P., and Klein D.A. Microbiology, 6th Edition MacGraw Hill Companies Inc.

5. Stanier R.Y., Adelberg E.A. and Ingraham J.L. (1987) General Microbiology, 5th Edition.Macmillan Press Ltd

6. D H Bergey; John G HoltBergey's manual of determinative Bacteriology, 9th Edition. Baltimore: Williams & Wilkins, 1994.

Microbiology Minor

F.YB.Sc. Sem II (NEP – Autonomy 2023 Pattern)

Course Title	Course Title Handling Microorganisms			
Course Code:23SBMB22MN			No. of Credits: 2	
Course Type: Minor			Total Teaching Hours: 30	

	Course Objectives
1.	To make them learn different types of microscopy
2.	To introduce the concept of sterilization and disinfection
3.	To enrich students' knowledge about growth and cultivation of microorganisms

	Course Outcome
1.	Students will be acquainted with the different types of microscopes
2.	Students will understand the importance of sterility in Microbiology
3.	Students will learn techniques to observe and cultivation of micro-organisms

Syllabus		
Credit I	Microscopy, Sterilization and Disinfection	15
	1.Discovery Of Microscope :	5
	Micrographia of Anton von Leeuwenhoek and Robert Hooke	
	2. Microscopy:	
	A.Bright field microscopy:	
	Structure, working and ray diagram of a compound light	
	microscope; concepts of magnification	
	B. Fluorescence Microscopy	
	Structure, working and ray diagram of a compound light	
	microscope; concepts of magnification	
	3 Staining Techniques.	5
	i Definition of Stain: Types of stains (Basic and Acidic)	5
	ii Properties and role of Fixative Mordant Decolouriser and	
	Accentuator	
	iii Monochrome staining and Negative (Relief)staining	
	iv.Differential staining - Gram staining	
	4.Sterilization and Disinfection	
	a. Sterilization	
	i. Physical Agents - Heat, Radiation, Filtration	
	ii. Checking of efficiency of sterilization (Dry and Moist) –	5
	Biological and Chemical Indicators	
	b.Disinfection:	
	i.Chemical agents and their mode of action-	
	Alcohol, Ethylene oxide.	
Credit II	Cultivation and Growth of Microorganisms	15
	1.Nourishing Microorganisms	12
	i.Nutritional requirements	
	ii.Nutritional classification	
	iii.Design and preparation of media: Common ingredients of	

media	
iv. Types of media	
v.Methods for cultivating photosynthetic, extremophilic and	
chemo- lithotrophic bacteria, anaerobic bacteria, algae, fungi,	
actinomycetes and viruses	3
2.Growth of Microorganisms	5
ii.Growth curve and Generation time	
iii.Diauxic growth	

1.Salle A.J. (1971) Fundamental Principles of Bacteriology 7th Edition. Tata MacGraw Hill Publishing Co.

2. Tortora G.J., Funke B.R., Case C.L. (2006). Microbiology: An Introduction. 8th Edition. Pearson Education Inc

3. Wilson K. and Walker J.M. (2005) Principles and Techniques of Biochemistry and

Molecular Biology. 6th Edition Cambridge University Press.

4. Hans G. Schlegel (1993) General Microbiology, 8th Edition, Cambridge University Press

5. Michael J Pelczar, JR. E.C.S. Chan, Noel R. Krieg. (1993) Microbiology, 5th Edition, Tata Mac Graw Hill Press.

F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)

Course Title Basic techniques in Microbiology			
Course Code: 23SBMB11VS			No. of Credits:2
Course Type: VSC			Total Teaching Hours:60

	Course Objectives
1.	To provide adequate knowledge to the students on basic techniques in Microbiology
2.	To acquaint students with the instruments used in Microbiology laboratory
3.	To make the students understand different methods of preservation of microorganisms
4.	To make students learn aseptic techniques

	Course Outcome
1.	Students will learn techniques in Microbiology
2.	Students will understand the use of instruments in Microbiology Laboratory
3.	Students will get acquainted with aseptic transfer techniques
4.	Students will learn to preserve and revive microbes

	Syllabus	
	To study the principle, operation, precautions and application	3
	of common Microbiology laboratory instruments:	
	i. pH Meter	
	ii. Analytical balance	
1	iii. Distillation unit	
	iv. Spectrophotometer	
	v. Water bath	
	vi. CO ₂ Incubator	
	Introduction and use of common laboratory glassware:	2
	i. Test tubes	
2	ii. Culture tubes	
	iii. Suspension tubes	
	iv. Screw capped tubes	

	v. Petri plates	
	vi. Pipettes: Mohr, Serological & amp; Micropipettes	
	vii. Pasteur pipettes	
	viii. Erlenmeyer flask	
	ix. Volumetric flask	
	x. Glass spreader	
	xi. Durham's tube	
	xii. Cragie's tube	
	xiii. Inoculating needles: Wire loop, stab needles	
	Learning basic techniques in Microbiology:	
	i. Wrapping of glassware	
3	ii. Cotton plugging	1
	iii. Cleaning and washing of glassware	
	iv. Biological waste disposal	
4	Aseptic transfer techniques	1
	Wet mount slide preparation and its observation for:	1
5	Algae, Fungi and Protozoa	
6	Special staining i) Flagella staining	1
7	Different types of Streak plate technique:	2
	a. T-streaking	
	b. Continuous Streaking	
	c. Radiant Streaking	
	d. Semi-quantitative Streaking	
8	Checking of efficacy of chemical disinfectant:	2
	Phenol Coefficient (Rideal Walker method)	
9	Methods of preservation and revival of cultures (Any three)	2

- 1. Microbiology: A Laboratory Manual Book by James G. Cappuccino and Natalie Sherman.
- 2. Practical microbiology: Professor Dr. R. C. Dubey and Dr. D. K. Maheshwari, S. Chand Publishing, 2002
- Practical Handbook of Microbiology: 2nd Edition, Edited by Emanuel Goldman and Lorrence H. Green, CRC Press

F.YB.Sc. Sem I (NEP – Autonomy 2023 Pattern)

Course Title	Experimental Microbiology	
Course Code: 23SBMB11VS (Minor)		No. of Credits:2
Course Type: VSC		Total Teaching Hours:60

	Course Objectives
1.	To provide adequate knowledge to the students on basic techniques in Microbiology
2.	To acquaint students with the instruments used in Microbiology laboratory
3.	To make the students understand different methods of preservation of microorganisms
4.	To make students learn aseptic techniques

	Course Outcome
1.	Students will learn techniques in Microbiology
2.	Students will understand the use of instruments in Microbiology Laboratory
3.	Students will get acquainted with aseptic transfer techniques
4.	Students will learn to preserve and revive microbes

Syllabus		
	To study the principle, operation, precautions and application	4
	of common Microbiology laboratory instruments:	
	i. Incubator	
	ii. Hot air oven	
	iii. Autoclave	
1	iv. Colorimeter	
	v. Laminar air flow hood	
	vi. Clinical centrifuge	
	vii. Analytical balance	
	viii.Distillation unit	
_	Construction (mechanical and optical), working and care of bright field	1
2	microscope	

	Introduction and use of common laboratory glassware:	2
	i. Test tubes	
	ii. Culture tubes	
	iii. Suspension tubes	
	iv. Screw capped tubes	
	v. Petri plates	
	vi. Pipettes: Mohr, Serological & amp; Micropipettes	
3	vii. Pasteur pipettes	
	viii. Erlenmeyer flask	
	ix. Volumetric flask	
	x. Glass spreader	
	xi. Durham's tube	
	xii. Cragie's tube	
	xiii. Inoculating needles: Wire loop, stab needles	
4	Learning basic techniques in Microbiology:	
	i. Wrapping of glassware	
	ii. Cotton plugging	1
	iii. Cleaning and washing of glassware	
	iv. Biological waste disposal	
5	Aseptic transfer techniques	1
6	Media preparation:	1
	Preparation of simple laboratory nutrient media:	
	a. Nutrient broth	
	b. Nutrient agar	
	c. MacConkey's agar	
7	Checking sterilization efficiency of autoclave using a biological	1
	indicator(B. stearothermophilus)	
8	Basic staining techniques:	2
	i. Monochrome staining	
	ii. Negative staining	
9	Differential Staining	1
	i. Gram Staining	
10.	Method of Isolation of bacteria : Streak plate technique	1

- 1. Microbiology: A Laboratory Manual Book by James G. Cappuccino and Natalie Sherman.
- Practical microbiology: Professor Dr. R. C. Dubey and Dr. D. K. Maheshwari, S. Chand Publishing, 2002
- Practical Handbook of Microbiology: 2nd Edition, Edited by Emanuel Goldman and Lorrence H. Green, CRC Press

F.YB.Sc.Sem I (NEP – Autonomy 2023 Pattern)

Course Title SOPs for instrumentation in Life Sciences			
Course Code: 23SBMB11SE			No. of Credits:02
Course Type: SEC			Total Teaching Hours:60

Course Objectives		
1.	This course will enable the students to understand Good Laboratory Practices to be followed in microbiology laboratory.	
2.	To acquaint students with the principle and working of a Bright field microscope.	
3.	To make the students understand the SOPs of various instruments.	

Cour	Course Outcome		
1.	Student will acquire adequate knowledge to follow Good Laboratory Practices in the microbiology laboratory.		
2.	Students will gain confidence in Microscope handling and focussing techniques.		
3.	Hands on training of various Instruments used in the Microbiology laboratory.		

Syllabus		
1.	Good Laboratory Practices	01
	Safety measures and Good Laboratory Practices in microbiology laboratory.	
2.	Microscopy	02
	Study of parts and functions of bright field microscope.	
3.	SOPs of Microbiology laboratory instruments	12

a.pH meter	
b.Incubator (Static and Rotary Shaker)	
c.Autoclave	
d. Hot air oven	
e. Colorimeter	
f. Spectrophotometer	
g. Laminar air flow hood	
h. Centrifuge (Clinical and Cooling)	
i. Analytical balance	
j. Distillation unit.	
k. Serological Water bath	

1. Fundamental principles of Bacteriology By A J Saale

2. Experimental Microbiology and Instrumentation 7 July 2011 by Dr Bhanu Shrivastava (Author)

3. Principles and Techniques of Biochemistry and Molecular Biology Seventh edition Wilson and Walker.

4. Biophysical chemistry - principles and techniques By Avinash Upadhyay .

5. Biochemistry-Modern theory and techniques By Rodney Boyer

2023 Pattern)

Course Title	Adrishta Krimi Shastra	
Course Code: 23SBMB111MJ		No. of Credits: 2 (1 Unit equivalent to 1 Credit)
Course Type:	MM (Major Mandatory)	Total Teaching Hours: 30

	Course Objectives		
1.	To enrich students" knowledge and train them in pure Microbial Sciences		
2.	To present to the students the historical developments in microbiology from Vedas		
	till date		
3.	To inculcate sense of Scientific Responsibilities & Social Awareness		
4.	To familiarize students with Microbial Diversity		
5.	To introduce the basic concepts of classification and taxonomy of micro-organisms.		

	Course Outcome		
1.	Students will be acquainted with the different areas of Microbiology from ancient		
	India.		
2.	Students will become aware about the role of Microbiologist in various fields of		
	Science.		
3.	Students will understand the Significance of Micro-organisms in Day to Day Life		

Syllabus			
Credit I	Knowledge of Microbiology in Ancient Indian Literature	15	
	1. History	5	
	i. "Sage scientist Kannva" as the Father of Microbiology		
	ii. Sukshmjeevanu in Vedas		
	iii. Abiogenesis		
	2. Medical Microbiology		
	i. Incidence of raktaja krimi (dermatophytes)	5	
	ii. Indian Medicinal Plants: Preventive and therapeutic	5	
	iii. Modern medicine		

	3. Agricultural Microbiology-	
	i. Microbiological Properties of Beejamrit	5
	ii. Dynamic Plant-Beneficial Microbial Network	
Unit II	Ethno-microbiology	15
	1. Indian fermented foods and beverages	5
	i. Local fermented products and their Microbial flora	
	ii. Health benefits of traditional fermented foods	
	2. Promoting gut bacterial diversity using Thali diet approach	5
	i. Nutritional value of thali diet	
	ii. Ancient Thali Diet- Gut Microbiota, Immunity, and Health	
	3. Spoilage of food and methods of food preservation	5
	i. Food spoilage- causes and role of bacteria	
	ii. Traditional and modern techniques of food preservation	

1. Sukshmjeevanu in Vedas: The Forgotten Past of Microbiology in Indian Vedic Knowledge

2. Micro-organisms in Vedas R. K. Jakhmola

3. The Medicine of Old India Rachel Hajar, M.D. Heart Views. 2013 Apr-Jun; 14(2): 92.

4. Cakra-samgraha of Cakrapani, Edited with the commentary of Sivadasa Sena by Devendra Nath Sen and Upendra Nath Sen, Calcutta.

5. On the incidence of raktaja krimi (dermatophytes) in chhindwara, madhya pradesh

M K Rai 1, K K Shrivastava

6. Microbiological Properties of Beejamrit, an Ancient Indian Traditional Knowledge, Uncover a

Dynamic Plant-Beneficial Microbial Network Shibasis Mukherjee Ramakrishna Mission

Vivekananda University and others

7. Vedic Indians were Aware of the Microbial Biodiversity, Demanding "Kannva" as the Father of Microbiology Sachidananda Padhy

8. Mahdihassan, S.: 1981, 'Parisrut the earliest distilled Liquor of Vedic Times or of about 1500 BC', UHS, 16(2), 223-229.

9. Tamang, J. P. (2022). "Ethno- microbiology" of ethnic Indian fermented foods and alcoholic beverages. Journal of Applied Microbiology, 133(1), 145-161.

10. Shondelmyer, K., Knight, R., Sanivarapu, A., Ogino, S., & Vanamala, J. K. (2018). Focus: Nutrition and Food Science: Ancient Thali diet: gut microbiota, immunity, and health. The Yale journal of biology and medicine, 91(2),177